应实验室主任、土木工程与力学学院院长周又和教授,萃英特聘教授王记增博士邀请,美国工程院院士,布朗大学工学院高华健教授前来我校进行学术交流,并作学术报告。
欢迎广大师生光临!
题目:生物与工程系统中的微纳米力学研究
时间:2012年9月13日(星期四)下午16:00
地点:逸夫科学馆报告厅
报告人简介:
高华健,美国工程院院士、美国布朗大学Walter H. Annenberg冠名教授、国际知名力学家、材料学家。1982年于西安交通大学获理学学士学位。1983年赴美国哈佛大学留学,师从国际著名力学家J.R. Rice教授,于1984年和1988年分别获工学硕士和工学博士学位。1988年至2002年任教于美国斯坦福大学,期间分别于1994年和2000年受聘为终身副教授和终身教授。2001年至2006年任德国Max-Planck金属材料研究所主任。2006年起执教于美国布朗大学,任终身教授。
高华健教授长期致力于探索研究生物和工程系统中控制材料与结构力学性能的基本原理。至今共发表SCI学术论文300余篇,其中十余篇发表在《Nature》、《Science》及《Nano Letters》,70余篇发表在固体力学领域最好的两个期刊《Journal of the Mechanics and Physics of Solids》和《International Journal of Solids and Structures》,并长期担任前者的主编。SCI总引用一万两千余次,H因子为58。因在微观力学研究领域所做出的杰出贡献,高华健教授先后获古根海姆纪念奖、德国洪堡奖、美国机械工程师协会首届应用力学青年学者特殊成就奖(每年仅一人)、及国际理论与应用力学学会颁发的希尔奖(四年一届)等学术奖励,并于2012年当选为美国工程院院士。
摘要:
Nanomechanics is a highly interdisciplinary field that attempts to combine the state-of-the-art experimental techniques and unprecedented computing power to probe unique mechanical properties of materials at nanoscale. As examples of recent progresses in this field, I will describe two sets of recent research on nanomechanics of engineering and biological system conducted by my research group and our collaborators. The first is concerned with the study of high strength, high ductility metallic nanostructures. Here, we report a combined theoretical and experimental study on ductile vs brittle deformation and fracture behaviors in nanotwinned nanopillars, with results indicating a unique twin-spacing-induced ductile-brittle transition mechanism in such systems (D. Jang, X. Li, H. Gao and J. Greer, Nature Nanotechnology, 2012). The second has to do with how 1D and 2D nanomaterials such as nanotubes, nanowires, nanofibers and graphene enter human and animal cells via unique tip/corner/edge entry pathways (X. Shi, A. von dem Bussche, R. Hurt, A. Kane and H. Gao, Nature Nanotechnology, 2011). This topic is of urgent societal concerns since the rapid developments of nanotechnology have led to the projection that the coming decades may see release of hundreds even thousands of tons of nanomaterials into the environment, and high aspect ratio 1D and 2D nanomaterials are known to cause frustration of human and animal cells, which can further cause inflammation and cancer as in the case of asbestos.